首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   550篇
  免费   53篇
  2023年   5篇
  2022年   1篇
  2021年   9篇
  2020年   3篇
  2019年   10篇
  2018年   12篇
  2017年   6篇
  2016年   10篇
  2015年   32篇
  2014年   23篇
  2013年   44篇
  2012年   48篇
  2011年   43篇
  2010年   27篇
  2009年   32篇
  2008年   23篇
  2007年   35篇
  2006年   37篇
  2005年   29篇
  2004年   24篇
  2003年   36篇
  2002年   35篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   15篇
  1997年   6篇
  1996年   9篇
  1995年   6篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1979年   1篇
  1965年   3篇
  1964年   1篇
排序方式: 共有603条查询结果,搜索用时 31 毫秒
91.

Background

Integrins, cell-surface receptors that mediate adhesive interactions between cells and the extracellular matrix (ECM), play an important role in cancer progression. Expression of the vitronectin receptor αvβ3 integrin correlates with increased invasive and metastatic capacity of malignant melanomas, yet it remains unclear how expression of this integrin triggers melanoma invasion and metastasis.

Results

Two melanoma cell lines C8161.9 and M14 both express high levels of αvβ3 integrin and adhere to vitronectin. However, only the highly metastatic C8161.9 cells are capable of invading vitronectin-enriched Matrigel in an αvβ3-depenent manner. Elevated levels of PKCα and PKCδ, and activated Src were detected specifically in the highly metastatic melanoma cells, but not in the low metastatic M14 cells. Inhibition of Src or PKC activity suppressed αvβ3-dependent invasion. Furthermore, over expression of Src or PKCα and PKCδ was sufficient to confer αvβ3-dependent invasiveness to M14 cells. Stress fiber formation and focal adhesion formation were almost completely absent in C8161.9 cells compared to M14 cells. Inhibition of Src signaling was sufficient to restore normal actin architecture, and resulted in decreased p190RhoGAP phosphorylation and enhanced RhoA activity. Src had no effect on Rac activity. Loss of PKCα expression, but not PKCδ, by siRNA inhibited Rac and PAK activity as well as invasiveness. Loss of PKCα restored focal adhesion formation and partially restored stress fiber formation, while loss of PKCδ primarily restored stress fibers.

Conclusion

The misregulated expression of PKCα and PKCδ and elevated Src activity in metastatic melanoma cells is required for efficient αvβ3-mediated invasion. PKCα and Src enhance αvβ3-mediated invasion in part by increasing the GTPase activity of Rac relative to RhoA. PKCα influences focal adhesion formation, while PKCδ controls stress fibers.  相似文献   
92.

Background

Vitamin D may play a protective role in many diseases. Public health messages are advocating sun avoidance to reduce skin cancer risk but the potential deleterious effects of these recommendations for vitamin D metabolism have been poorly investigated.

Methodology/Principal Findings

We investigated the association between 25-hydroxy-vitamin D (25(OH)D), skin type and ultraviolet exposure in 1414 Caucasian females in the UK. Mean age of the cohort was 47 years (18–79) and mean 25(OH)D levels were 77 nmol/L (6–289). 25(OH)D levels were strongly associated with season of sampling with higher levels in the spring and summer months (p<0.0001). Light skin types (skin type 1 and 2) have lower levels of 25(OH)D (mean 71 nmol/L) compared to darker skin types (skin type 3 and 4) (mean 82 nmol/L) after adjusting for multiple confounders (p<0.0001). The trend for increasing risk of low vitamin D with fairer skin types was highly significant despite adjustment for all confounders (p = 0.001).

Conclusions/Significance

Contrary to previous studies across different ethnic backgrounds, this study within Caucasian UK females shows that fair skin types have lower levels of 25(OH)D compared to darker skin types with potential detrimental health effects. Public health campaigns advocating sun avoidance in fair skinned individuals may need to be revised in view of their risk of vitamin D deficiency.  相似文献   
93.
Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+ H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host.  相似文献   
94.
There are nine known expanded CAG repeat neurological diseases, including Huntington's disease (HD), each involving the repeat expansion of polyglutamine (polyGln) in a different protein. Similar conditions can be induced in animal models by expression of the polyGln sequence alone or in other protein contexts. Besides the polyGln sequence, the cellular context of the disease protein, and the sequence context of the polyGln within the disease protein, are both likely to contribute to polyGln physical behavior and to pathology. In HD, the N-terminal, exon-1 segment of the protein huntingtin contains the polyGln sequence immediately followed by an oligoproline region. We show here that introduction of a P10 sequence C-terminal to polyGln in synthetic peptides decreases both the rate of formation and the apparent stability of the amyloid-like aggregates associated with this family of diseases. The sequence can be trimmed to P6 without altering the suppression, but a P3 sequence is ineffective. Spacers up to at least three amino acid residues in length can be inserted between polyGln and P10 without altering this effect. There is no suppression, however, when the P10 sequence is either placed on the N-terminal side of polyGln or attached to polyGln via a side-chain tether. The nucleation mechanism of a Q40 sequence is unchanged upon addition of a P10 C-terminal extension, yielding a critical nucleus of one. The effects of oligoPro length and structural context on polyGln aggregation are correlated strongly with alterations in the circular dichroism spectra of the monomeric peptides. For example, the P10 sequence eliminates the small amount of alpha helical content otherwise exhibited by the Q40 sequence. The P10 sequence may suppress aggregation by stabilizing an aggregation-incompetent conformation of the monomer. The effect is transportable: a P10 sequence fixed to the C terminus of the sequence Abeta similarly modulates amyloid fibril formation.  相似文献   
95.
Using a novel cDNA microarray prepared from sources of actively responding immune system cells, we have investigated the changes in gene expression in the target tissue during the early stages of infection of neonatal chickens with infectious bursal disease virus. Infections of two lines of chickens previously documented as genetically resistant and sensitive to infection were compared in order to ascertain early differences in the response to infection that might provide clues to the mechanism of differential genetic resistance. In addition to major changes that could be explained by previously described changes in infected tissue, some differences in gene expression on infection, and differences between the two chicken lines, were observed that led to a model for resistance in which a more rapid inflammatory response and more-extensive p53-related induction of apoptosis in the target B cells might limit viral replication and consequent pathology. Ironically, the effect in the asymptomatic neonatal infection is that more-severe B-cell depletion is seen in the more genetically resistant chicken. Changes of expression of many chicken genes of unknown function, indicating possible roles in the response to infection, may aid in the functional annotation of these genes.  相似文献   
96.
Mutations in fibrillin-1 result in Marfan syndrome, which affects the cardiovascular, skeletal and ocular systems. The multiorgan involvement and wide spectrum of associated phenotypes highlights the complex pathogenesis underlying Marfan syndrome. To elucidate the genotype to phenotype correlations, we engineered four Marfan syndrome causing mutations into a fibrillin-1 fragment encoded by exons 18-25, a region known to interact with tropoelastin. Biophysical and biochemical approaches, including small angle x-ray scattering, analytical ultracentrifugation, and circular dichroism, were used to study the impact of these mutations upon the structure and function of the protein. Mutations G880S, C862R, and C908R, situated within the second hybrid domain, disrupted the ratio of alpha-helix to beta-sheet leading to a more compact conformation. These data clearly demonstrate the importance of the previously uncharacterized hybrid domain in fibrillin-1 structure. In contrast, mutation K1023N situated within the linker region between the third eight cysteine motif and cbEGF 11 markedly extended the length of the fragment. However, none of the mutations affected tropoelastin binding. The profound effects of all four mutations on fragment conformation suggest that they contribute to the pathogenesis of Marfan syndrome by disrupting protein folding and its assembly into fibrillin-rich microfibrils.  相似文献   
97.
98.
In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF(Skp2) substrate p27(Kip1). CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.  相似文献   
99.
100.
Metabolic complications arising from excessive fructose consumption are increasing dramatically even in young children, but little is known about ontogenetic mechanisms regulating Glut5 [glucose transporter 5; encoded by the Slc2a5 (solute carrier family 2 member 5) gene]. Glut5 expression is low postnatally and does not increase, unless luminal fructose and systemic glucocorticoids are present, until ≥ 14 days of age, suggesting substrate-inducible age- and hormone-sensitive regulation. In the present study, we perfused intestines of 10- and 20-day-old rats with either fructose or glucose then analysed the binding of Pol II (RNA polymerase II) and GR (glucocorticoid receptor), as well as acetylation of histones H3 and H4 by chromatin immunoprecipitation. Abundance of Glut5 mRNA increased only with fructose perfusion and age, a pattern that matched that of Pol II binding and histone H3 acetylation to the Glut5 promoter. Although many regions of the Glut5 promoter respond to developmental signals, fewer regions perceive dietary signals. Age- but not fructose-dependent expression of Sglt1 [sodium-dependent glucose co-transporter 1 encoded by the Slc5a1(solute carrier family 5 member 1) gene] also correlated with Pol II binding and histone H3 acetylation. In contrast, G6Pase (glucose-6-phosphatase; encoded by the G6pc gene) expression, which decreases with age and increases with fructose, is associated only with age-dependent changes in histone H4 acetylation. Induction of Glut5 during ontogenetic development appears to be specifically mediated by GR translocation to the nucleus and subsequent binding to the Glut5 promoter, whereas the glucocorticoid-independent regulation of Sglt1 by age was not associated with any GR binding to the Sglt1 promoter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号